Задача с кружка МЦНМО за 8 класс (тема занятия - инвариант): "На столе - куча из 1001 камня. Ход состоит в том, что из какой-либо кучи, содержащей более одного камня, выкидывают камень, а затем одну из куч делят на две. Можно ли через несколько ходов оставить на столе только кучки, состоящие из трех камней?"

Я предлагаю эту задачу, но с маленькой кучей камней, малышам 1-2 класса и даже дошкольникам, как исследовательскую, не на инвариант.

"На столе лежит кучка из 23 камней. Ход состоит в том, чтобы из какой-либо кучи, содержащей более одного камня, выкидывают камень, а затем одну из куч делят на две. Можно ли через несколько ходов оставить на столе только кучи, состоящие из трех камней?"

Ребята пытаются следовать правилам, выбрасывать камень, делить кучки. У кого-то сразу не получается, у кого-то получается. Но, раз у кого то получилось, и он нам это продемонстрировал, значит это всё-таки возможно.

А дальше самое интересное. А если было 20 камней? Дети снова идут опытным путём: пробуют, но ни у кого не получается. 

Тогда уже я спрашиваю: а почему?
А получится ли с 15 камнями? с 14-ю?
Почему иногда получается, а иногда нет?
Сходу дать ответ, конечно, никто из первоклассников еще не готов.

"А какое самое маленькое количество камней может быть в первой кучке, чтобы всё-таки получилось по этом правилам оставить только кучи из 3 камней?"
Вот тут большая часть наших кружковцев догадываются: "Это 7 камней! Один убираем, а 6 делим на кучки 3 и 3, и всё получилось!"

И пришло время для главного вопроса: "А сколько камней надо добавить к этой куче из 7 камней, чтобы тоже всё получилось?"

Тут многие сначала ошибаются: "3 камня!" Но их поправляют уже их товарищи: "А ведь один из них мы должны выбросить. Значит 4."
"А дальше? Сколько теперь можно добавить, чтобы снова всё получилось?"

Дети уже всё поняли и довольны: "Тоже 4 камня!"

"А сможете понять - удастся ли разложить так кучу из 47 камней?" (для них это такое же большое и малопредставимое число, как для нас 1001 камень)
И практически все понимают: " 47 - это было 7 камней и к ним 10 раз добавили по 4 камня. Значит такую кучу можно разложить по нашим правилам на маленькие кучки из 3 камней."


Яков Иосифович:

Решение "для больших":

С каждой операцией число камней уменьшается на 1, а число кучек увеличивается на 1. После х операций у нас 1001-х камней и х+1 кучка. Если бы всё получилось, то 1001-х=3(х+1), 998=4х, но 998 на 4 не делится. 

 

Обновления на нашем сайте

Что на самом деле изображено на картине: Богданов–Бельский. Устный счет в народной школе

Многие видели картину "Устный счет в народной школе". Конец 19 века, народная школа, доска, интеллигентный учитель, бедно одетые дети, 9–10 лет, с энтузиазмом пытаются решить в уме задачу написанную на доске. Первый решивший сообщает ответ учителю на ухо, шепотом, чтобы другие не потеряли интерес.

Теперь посмотрим на задачу: ( 10 в квадрате + 11 в квадрате + 12 в квадрате + 13 в квадрате + 14 в квадрате) / 365 =???

Продолжение урока в "Чуланчике" про 9 точек

Предлагаем вашему вниманию видео, где Я. И. Абрамсон решает вместе с дошкольником в "Чуланчике" задачу про 9 точек, которые надо перечеркнуть четырьмя прямыми линиями, не отрывая руки от бумаги/доски.

Говорят дети

Часто на уроках происходят забавные диалоги. К сожалению, поскольку они всегда возникают неожиданно, редко успеваешь их запомнить и записать. А жаль...Хорошая коллекция бы собралась. Но вот недавно произошёл такой эпизод.

Встреча преподавателей в Ведунке

В конце октября в семейном центре Ведунок состоялась дружеская осенняя встреча преподавателей по методике Я.И. Абрамсона.

Урок в "Чуланчике": задача про 9 точек, которые надо перечеркнуть четырьмя прямыми линиями, не отрывая руки от бумаги/доски

Предлагаем вашему вниманию видео, где Я. И. Абрамсон ведет урок математики для дошкольников в "Чуланчике".