Придумала задачу, и мы её решали в группах 1-2 класса в разных вариациях. Может быть она где-то когда-то была, я не встречала. 
 
Сколько раз надо изогнуть линию, чтобы обвести контур квадрата? Нельзя отрывать руку от бумаги и проходить по одной и той же линии дважды. Лишних линий быть не должно.
Можно представить, что мы сгибаем контур квадрата из проволоки. Сколько раз надо согнуть проволоку?
 
Сколько есть вариантов ответа? 
Почему именно столько вариантов ответа?
 
Дети быстро сделали 3 "изгиба". Чтобы сделать 4 "изгиба" сначала изобретали разное не по условию: пятиугольник, квадрат с диагональю. Потом, конечно, догадались первоклассники.
А второклассники ещё и доказали в общем виде, почему для любого многоугольника 2 варианта ответа.
 
Затем я спросила: "А сколько раз надо изогнуть проволоку, чтобы получилась окружность?"
Почти у всех детей во всех группах первый ответ - 0. Это странно, ведь если не сгибать проволоку, она так и останется прямой. Но дети имеют в виду, что у окружности нет углов. 
Начинают пробовать получить окружность из прямой проволоки, предлагают 9, 11, 15 изгибов. А потом догадываются, что чем больше изгибов сделать , тем более похоже на окружность получится. И предлагают уже другие варианты: миллион, миллиард. А потом уже - "бесконечность"!
FBIMG1600756998606
FBIMG1600757013481
FBIMG1600757010123

Обновления на нашем сайте

Онлайн урок - доказать, что четырехугольник DABC — равнобедренная трапеция

Предлагаем вашему вниманию видео, где Я. И. Абрамсон ведет онлайн урок математики.

Онлайн урок - Помогаем бабушке принять таблетки

Предлагаем вашему вниманию видео, где Я. И. Абрамсон ведет онлайн урок математики.

Тренируемся в доказательствах по индукции

Предлагаем вашему вниманию видео, где Я. И. Абрамсон ведет онлайн урок математики.

Онлайн урок в начальной школе. Разбор ДЗ

Предлагаем вашему вниманию видео, где Я. И. Абрамсон ведет онлайн урок математики.

Статья об опыте дистантного образования

Чего стоило всем участникам процесса перевести школу в онлайн, рассуждает лингвист, науч. сотр. Института языкознания РАН, преподаватель школы «Наукоград» Мария Молина.